Montgomery County Community College CIS 126 Computer Architecture & Organization 3-2-2

COURSE DESCRIPTION:

This course is designed to explore how a computing system works and introduces the student to the organization and architecture of computer systems using the Assembly programming language. Computer Science students will gain insight into the functional components of a computer system. Topics covered will include digital logic, data representation, interfacing and I/O strategies, memory architecture, a computer's

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
4. Describe the	Lecture	Competency Checklist
architecture of a	Discussion	
computer by defining		
the relationship		
between instruction set		
architecture, micro		
architecture, and		
5 Define instruction set		Live Computer Lab
architecture (ISA)	Discussion	Demonstration
machine-level	Homework Assignments	Exams
instruction in terms of its		
functionality and		
resource use (registers		
and memory) and the		
difference between		
register-to-memory		
ISAs and load/store		
ISAs.		
6. Distinguish between the	Lecture	Competency Checklist
various classes of	Discussion	
movement orithmetic		
logical and flow control		
7 Implement Assembly	Ι	Ι
language code to		
demonstrate how		
subroutines are called.		
parameters are passed,		
and returns are made.		

LEARNING OUTCOMES	LEARNING ACTIVITIES	EVALUATION METHODS
15. Describe superscalar architectures that use multiple arithmetic units to execute more than one instruction per clock cycle.	Lecture Discussion	Quizzes
16. Explain performance measurement limitations when using MIPS or SPECmarks.	Lecture Discussion	Live Computer Lab Demonstration
 17. Analyze the relationship between power dissipation and computer performance and the need to minimize power consumption in mobile applications. 18. Describe techniques 	Lecture Discussion	Quizzes

used to enhan

6. Multiprocessing

- a. Amdahl's law
- b. Short vector processing (multimedia operations)
- c. Multicore and multithreaded processors
- d. Flynn's taxonomy: Multiprocessor structures and architectures
- e. Programming multiprocessor systems
- f. GPU and special-purpose graphics processors
- g. Introduction to reconfigurable logic and special-purpose processors

LEARNING MATERIALS:

Computer Organization and Architecture: Designing for Performance. 10th Edition. Stallings, Prentice Hall. 2015. ISBN: 9780134101613. Learning materials, such as links to online Assembly Language programming resources, will be made available to the student via the course management system.

COURSE APPROVAL:Date: 1995Prepared by:Marie HartleinRevised by:Kathy KellyRevised by:Larry EliasVPAA/Provost or designee Compliance Vf1 0 0 6.ap20 1 475.63 539.35 Tm/MCID 18xBDC /F1 1.,oT6