LEARNING OUTCOMES		LEARNING ACTIVITIES	EVALUATION METHODS
4.	Explain the relationship	Lectures	Laboratory Exercises and
	of atoms, ions,	Class Discussions	Reports
	molecules within the	Field Trips	Quizzes and Exams
	living and nonliving	Class Presentations	Essays
	universe.		
5.	Discuss the scope,	Lectures	Laboratory Exercises and
	breadth, and	Class Discussions	Reports
	interrelatedness of life	Field Trips	Quizzes and Exams
	on earth.	Class Presentations	Essays
6.	Explain the crucial role	Lectures	Laboratory Exercises and
	of water in biological	Class Discussions	Reports
	and nonbiological	Field Trips	Quizzes and Exams
	systems.	Class Presentations	Essays
7.	Analyze the role of cells	Lectures	Laboratory Exercises and
	in organisms and what	Class Discussions	Reports
	is unique about the	Field Trips	Quizzes and Exams
	cellular level of	Class Presentations	Essays
	biological organization.		
8.	Analyze the basic	Lectures	Laboratory Exercises and
	processes of all cells	Class Discussions	Reports
	and living organisms.	Field Trips	Quizzes and Exams
		Class Presentations	Essays
9.	Analyze the	Lectures	Laboratory Exercises and
	distinctiveness of	Class Discussions	Reports
	prokaryotic cells and	Field Trips	Quizzes and Exams
	their incredible	Class Presentations	Essays
	importance to the		
	biosphere.		
10	Apply the scientific	Lectures	Laboratory Exercises and
	method and critical	Class Discussions	Reports
	thinking skills to	Field Trips	Quizzes and Exams
	biological and scientific	Class Presentations	Essays
	problems.		
11	Analyze a complex	Lectures	Laboratory Exercises and
	process to determine	Class Discussions	Reports
	the main idea and make	Field Trips	Quizzes and Exams
	connections across	Class Presentations	Essays
	concepts in biology.		

- III.
- Evolution by Natural SelectionA. Explain the historical context, include fixity of species.B. Discuss Darwin's contributions: Theory o

- C. Lipids
 - 1.
- Describe the structure and biological importance:
 a. fatty acids
 b. triglyceri01 0 0 1 216.05 667.3f6 reW*nBT/F1 9r2 Tf1 0 c3BT/F1 12 Tf1 0 0

- F. Describe organelle structure and function. Compare and contrast plant and animal organelles.
 - 1. chloroplast
 - 2. central vacuole
 - 3. cell wall
 - 4. mitochondria
 - 5. nucleus
 - 6. reticular (endomembrane) system include rER, sER, Golgi, lysosomes, peroxisomes

III. Membrane Functions: Passive Transport

- A. Define.
- B. Explain the role of concentration gradients and the role of kinetic energy.
- C. Describe types of passive transport:
 - 1. Diffusion. Use the terms direct and simple diffusion
 - a. Definition
 - b. Discuss the random movement of particles (Brownian motion)
 - c. Describe the net movement of particles and dynamic equilibrium
 - d. List factors affecting the rate of diffusion
 - e. Explain the importance of diffusion of oxygen and carbon dioxide across the cell membrane
 - f. Hypothesize and test via hands-on experimentation which substances may pass through a semipermeable membrane.
 - 2. Osmosis
 - a. Definition
 - b. Explain: isotonic, hypotonic and hypertonic solutions
 - c. Give examples of osmotic regulation in some aquatic and terrestrial organisms
 - d. Hypothesize and test via hands-on experimentation the outcome of exposing cells to hypertonic, hypotonic, and isotonic solutions

7.

- II. Meiosis I
 - A. Describe the basic activities in prophase I, metaphase I, anaphase I and telophase I.
 - B. Compare and contrast meiosis I to mitotic division.
 - C. Describe the importance of recombination and crossing over to genetic variability and evolution. Include terms such as bivalents, tetrads, chiasmata, synapsis.
 - D. Describe the importance of independent assortment to genetic variability and evolution.
- III. Meiosis II
 - A. Describe the basic activities in prophase II, metaphase II, anaphase II and telophase II.
 - B. Compare and contrast meiosis II to mitotic division.
- IV. Gametogenesis
 - A. Define gametogenesis.
 - B. List the importance of oogenesis and spermatogenesis.
 - C. Starting with a primary oogonium or spermatogonium, show the unequal cytoplasm and organelle distribution in oogenesis and explain the reason for one ovum vs. four spermatids. (Details of cell types are not important.)
 - D. Briefly describe spermatozoa differentiation and the organelles which remain. Explain why all mitochondria are from maternal descent.
- V. Summarize the Aspects of Meiosis and Sexual Reproduction As They Relate to Evolution

11. OBSERVABLE PATTERNS OF INHERITANCE

- I. Concepts of Heredity Before Mendel's Time
 - A. Discuss spontaneous generation and Louis Pasteur.
 - B. Introduce the blending inheritance theory.
- II. Mendelian Genetics
 - A. History of Mendel
 - 1. Introduce his background in physics and mathematics
 - 2. Discuss the choice of garden pea plant's four characteristics
 - 3. Explain his experim1.54 363.6C /P &MCID 18>BDp /P &MCID 18>BDp 0 g0 G 0.04

- 2. Transfer RNA
 - a. Define anticodon
 - b. Define the amino acid attachment site-the aminoacyl site
 - c. Explain the function as an adapter molecule between mRNA and protein
- 3. Messenger RNA
 - a. Explain the basic structure
 - b. Discuss the importance of the nucleotide sequence in determining the amino acid sequence
 - c. Define codon. Show the relationship of complementary pairing and importance to the tRNA anticodon
- B. Explain the overall basic concepts behind the events of the stages of translation.
 - 1. Initiation
 - 2. Elongation and translocation
 - 3. Termination
- IV. Antibiotics
 - A. Define and list some sources for antibiotics.
 - B. List some reasons for specificity for prokaryotes.
 - C. Briefly describe the effects on translation and on other processes including the interruption of the cell cycle.
- V. Mutations
 - A. List and define the types
 - 1. Point mutations: silent, missence (radical and conservative), nonsense
 - 2. Frameshift
 - 3. Students should be able to solve gene mutation problems when given hypothetical mRNA, the genetic code table and any of the above mutations

Β.

LEARNING MATERIALS: <u>Textbook</u>: Reece, J., Taylor, M., Simon, E., Dickey J., and Hogan, K. (2014). Campbell Biology: